
Discriminatively Trained Dependency Language Modeling for Conversational
Speech Recognition

Benjamin Lambert, Bhiksha Raj, Rita Singh

Language Technologies Institute, Carnegie Mellon University, USA
benlambert@cmu.edu, bhiksha@cs.cmu.edu, rsingh@cs.cmu.edu

Abstract
We present a discriminatively trained dependency parser-
based language model. The model operates on utterances,
rather than words, and so can utilize long-distance structural
features of each sentence. We train the model discriminatively
on n-best lists, using the perceptron algorithm to tune the
model weights. Our features include standard n-gram style
features, long-distance co-occurrence features, and syntactic
structural features. We evaluate this model by re-ranking n-
best lists of recognized speech from the Fisher dataset of
informal telephone conversations. We compare various
combinations of feature types, and methods of training the
model.
Index Terms: Automatic speech recognition, natural language
processing, language modeling, discriminative training

1. Introduction
Respectable performance at automatic recognition of
conversational speech has eluded speech recognition
researchers for many years. Recognition of dictated speech,
on the other hand, can be quite good.

It seems ironic, that a sequence of very simple clauses (i.e.
I went to the doctor, I'm pretty active, I run around a lot, and I
work out) is more difficult to model and recognize than
complex newswire sentences, like Doctor Salk on the other
hand uses everything but the envelope.

So why is there this discrepancy between recognition of
conversational speech and dictated speech? Part of the answer
surely lies in acoustic factors, like the cadence and
pronunciation, which are less predictable in informal and
conversational speech. Another part is due to the insufficiency
of the language model (LM) to capture the style of speech.
Conventional n-gram LMs fall short in modeling
conversational speech for a number of reasons. One, for
instance, is that a sequence of meaningful words is very often
interrupted by filler words and phrases. Thus, we see
sentences like this:

You know I I went to the an- the doctor you know an-
I'm I'm pretty active you know I run around a lot and I
work out and try to you know.

Here, repetitions (I’m I’m), false starts (the an- the), and fillers
(you know) severely disrupt the flow of meaningful words.

In this example, even when using a 4-gram LM, the most
useful language model cues are beyond the model’s three-
word history. Thus, the correct recognition of went to can
have no effect on the correct recognition of doctor. Nor, can
the correct recognition of any of doctor, active, and work out
have any effect on the recognition of the others.

Our model attempts to capture exactly these sorts of long-
distance dependencies. The structured long-distance
dependencies, as in went to … the doctor, are identified these
using an off-the-shelf dependency parser. The unstructured

long-distance dependencies, like those among doctor, active,
and work, are simply identified by their co-occurrence.

We utilize existing discriminative techniques to train the
model. This paper builds on earlier work, extending it by
adding new feature types, new feature combinations, and
detailed analysis.

2. Related Research
In order to include long-distance features in our model, it is
important that we model entire sentences or utterances rather
than individual words (as in a conditional language model).
The use of whole sentence language models for speech
recognition was pioneered by Rosenfeld et al. [1] around 2001.
Their model uses shallow parser features, and is trained in the
maximum entropy/exponential model framework. Though a
very interesting and novel technique, decreases in word error
rate were small.

Discriminative training methods have been shown to
perform better than maximum likelihood training in many
areas, including acoustic modeling [2], n-gram language
modeling [3], and machine translation [4]. There are various
ways one may discriminatively train a model, such as
conditional maximum likelihood estimation (CMLE). We use
one based on the perceptron algorithm [5] because it is
effective, but very simple to implement and use.

Finally, syntactic methods for language modeling and
speech recognition have a rich history. In some of these
models the parsing is integral to the language model including
work by Chelba et al. [6][7] or done as a separate process [8].
We take the latter (and simpler) approach of deriving model
features from a parse tree, thus keeping the model and
syntactic analysis separate processes. Our overall technique is
very similar to Collins et al [5] except that we use a
dependency parser rather than a Penn Treebank style syntactic
and derive different features from the parse tree.

3. The Model
Our model and training are very similar to that of Collins et al.
[5]. The typical method used to score a speech recognition
hypotheses, s, is the following formula, where a represents the
acoustic signal.

log(P(s | a)) = log(Pa (a | s))+α log(Pl (s)) (1)

Here, Pa(a|s) is the acoustic model, Pl(s) is the language
model, and α is the language weight.

We will assume Pl(s) is some baseline n-gram language
model. In this paper, as in Collins et al.[5], we identify
features of the whole sentence, and adjust the overall score of
the sentence, up or down, depending on the feature’s weight.
The resulting equation is an almost trivial extension of the
original equation:

log(P(s | a)) = log(Pa (a | s))+α log(Pl (s))+ fi (s) ⋅wi
i

n

∑ (2)

The only change we have made is to add the last term, a
summation of feature weights to the original score. The final
term simply adds the feature weight of each feature in the
sentence, s, to the overall score. That is, fi(s) is an indicator
function, returning one if the feature is present and zero if it is
not. The fi features are whole sentence features that capture
syntactic parse information or other long distance
dependencies.
3.1. Parameter estimation

There are numerous ways to estimate effective values for the
features weights, wi, in the equation above. The papers of
Rosenfeld [1], Roark [3], and Collins [5] share the general
form of the function above, but estimate the features weights
very differently.

Rosenfeld [1] estimates the weights within a maximum
likelihood, maximum entropy framework—and thus set the
parameters to maximize the likelihood of a corpus. Roark [3]
and Collins [5] on other hand estimate the weights
discriminatively (i.e. attempting to minimize word error rate).
In Roark [3], they perform a global optimization over the
feature weights with the goal of increasing the likelihood of
low word error rate (WER) candidates (taken from an n-best
list). In Collins [5], the feature weights are tuned similarly,
but with the perceptron algorithm rather than a global
optimization.

We use the perceptron algorithm to train the feature
weights in our model. We have come across two different
methods for using perceptron to tune the parameter weights,
those of Collins [5], and those of Hopkins [9]. The main
difference between the two approaches is how pairs of training
examples are chosen.

The basic idea is the following. Say we’re given two
sentences from an n-best list, s1 and s2. s1 is better than s2 in
that it has lower WER (i.e. wer(s1) < wer(s2)). However, our
model prefers s2 to s1 (i.e. P(s1|a) < P(s2|a)). In this case,
we’d like to give a small boost to the weights of all the
features present in s1 and a small penalty to the weights of all
the features present in s2. These small adjustments will bring
up P(s1|a) and P(s2|a) down. This is exactly what we want: we

want the language model probabilities to correlate inversely
with WER as much as possible.

Collins [5] chooses the pairs, by first selecting the
sentence on an n-best list that has the lowest WER (referred to
in their papers as si), and then pairing that with each of the
other members of the n-best list. Hopkins [9] chooses the
pairs by randomly sampling pairs from each n-best list
(accepting pairs with a probability proportional to the
difference in WER). They call this method “pairwise ranking
optimization.”

We use a method similar to Hopkins [9]; our method is
shown in Figure 1. We randomly choose pairs of ASR
hypotheses from the n-best lists (that have different WER and
different features), and use those as the training pairs. We do
not sample based on differences in WER. We also decrease
the learning rate r, by r/t after each iteration.

4. N-gram, co-occurrence and dependency
features

In this section we describe the features we use in our model:
standard n-gram features, co-occurrence features, and
dependency features. All features are treated as binary,
whether they are present in a sentence or not, regardless of
how many times they appear.
4.1. N-gram features and co-occurrence features
These are pretty self-explanatory. We generate features for
each sequence of up to n words (n=3). We also generate
features for each pair of words that co-occurs in a sentence; we
call these x-grams. x-grams are similar to the “trigger” word
pairs of Rosenfeld [10].

Examples of these features include:
f1 = xgram(I, I)
f2 = xgram(I, went)
f3 = xgram(I, to) …
fn = xgram(doctor, active)

4.2. Dependency features
Dependency features are designed to capture structured long-
distance dependencies, such as between I went to and the
doctor in the example sentence in the introduction. To
identify these dependencies, we use an off-the-shelf
dependency parser. The parser assigns typed and directed
links, between pairs of words in each sentence. The parser we
use, labels the links with Stanford’s taxonomy of 53
dependency types [11].

Each dependency link is labeled with one of the 53
grammatical relations. These include relations like that
between a verb and its noun subject (nsubj), between a verb
and its direct object (dobj), and so forth. Figure 2 shows a
portion of the parse for the example sentence of section 1.
This includes a prep link between the verb went and its
preposition to, as well as a pobj link from the preposition to to
the object of the preposition doctor.

Figure 2: A portion of a typed dependency parse.

Inputs:
nbestk k n-best lists
t iterations
c pair count
wer(s) word error rate function
f(s) returns the features of s
wi Initial parameters
r Learning rate

Algorithm:
loop t times:
 k = 0

loop until k = c:
let nbestk be selected randomly
let si be selected randomly from nbestk
let sj be selected randomly from nbestk
if si ≠ sj and f(si) ≠ f(sj) and

sign(wer(si) – wer(sj)) ≠ sign(P(si|a) –P(sj|a):
k++
for l in f(si):

wl = wl + sign(wer(si) - wer(sj)) × r
for l in f(sj):

wl = wl - sign(wer(si) - wer(sj)) × r

 Figure 1: Perceptron-based pairwise ranking optimization

Each link in the dependency parse tree becomes one
feature. Thus, each feature is a triplet of two words and a link
type:

f1 = prep(went, to)
f2 = pobj(to, doctor)
The results in section five also show performance of

untyped dependencies. By this we mean that we remove the
edge labels from the dependencies. Thus, the feature pobj(to,
doctor) simply becomes dep(to, doctor) and nobj(I, went)
becomes dep(I, went). Here are some example matches for the
feature det(the, school):

Taught at the same school for seven years…
I'm in the business school actually
…in the liberal arts school you need like three years

5. Feature selection
Many instances of the features types described in the previous
section will be relatively useless, or will be redundant with
existing n-grams. There is no sense inflating the model with
these features, so we select only those that are estimated to be
most useful. If nothing else, fewer features will mean less
time parsing and training. Collins[5] suggests that feature
selection is unnecessary when using the perceptron learning
algorithm, so we have tried this with and without feature
selection, and with varying levels of feature selection.

Identifying those features with the most discriminative
power is fairly straightforward. We simply count how often
they occur in correctly recognized speech and how often they
occur in incorrectly recognized speech. Features that occur
about the same number of times in each have low
discriminative power. Those that occur disproportionately
more in one or the other have high discriminative power.

To get examples of correctly and incorrectly recognized
speech, we took 100,000 utterances from our speech corpus
(the Fisher corpus [12]). The corresponding 100,000 reference
transcripts became our set of correctly recognized speech
(what we call the positive set). We then ran the same 100,000
utterances through our speech recognizer. The output of the
ASR system—when it was wrong—became our set of
incorrectly recognized speech (the negative set). The size of
the set of incorrectly recognized utterances (i.e. WER greater
than zero) is 80,271. Table 1 shows some examples of the
sentences we used.

Again following Rosenfeld, et al [1][13], we use the
following method to select the most useful features, from our
positive and negative sets. This is an example of a “two-
sample statistical hypothesis test.” Equation 3 yields a
standard score or z-value. If the z-value is two (i.e. about two
standard deviations) then there’s a 96% chance that the feature
has different distributions in the two sets. The larger the z-
value, the more discriminative power the feature has. We call
this z-score the utility.

Positive set (i.e. reference
transcripts)

Negative set (i.e. incorrectly
recognized utterances)

Good how are you doing Good how are you done
Do you have any idea what's
going on

Give any idea what's going on

Because I don't like to cook very
much

Can I don't like to cook very
much

I tend to eat out n/a

Table 1 Correctly and incorrectly recognized examples

In this equation, x is the number of positive sentences that
contain the feature, y is the number of negative sentences that
contain the feature, n is the number of positive sentences
(100,000), and m is the number of negative sentences (80,271).
See tables 3 and 4 for examples.

x
n −

y
m

x+y
m+n() ⋅ 1− x+y

m+n() ⋅ n+m
nm() (3)

6. Experimental results
6.1. Experimental setup
All experiments were on a subset of the Fisher1 dataset [12].
We decoded 110,000 utterances of this dataset with the
Sphinx3 ASR system [14]. The LM is a trigram LM trained
on Fisher2 [12] and Switchboard transcripts [15]. The acoustic
model was also trained on Fisher2. 100,000 of these were used
for feature generation and selection. The other 10,000 were
used to generate 1,000-best lists for parameter tuning and
evaluation.

For the contrast score weighting of features, we split the
10,000 n-best lists into two sets: one for training the model
weights with perceptron, and the other for doing the final
evaluation.

We parsed the data with the Stanford POS tagger
(caseless mode, trained on Switchboard)[16], and the
MaltParser [18] (using pre-trained English model
‘engmalt.linear-1.7’. The POS tagger is trained on speech, the
parser is not.

To train the model weights, we set the parameters
described in section 3 as follows. We randomly sampled
10,000,000 hypothesis pairs (c), at each of 20 iterations (t).
The learning rate (r) was initially set to 0.00001, and
decreased at each iteration. The initial parameters were all set
to zero.

Since the algorithm is randomized, we repeated the
experiments several times. The WER were always within
about 0.01% of one another, and usually within 0.001%. This
indicates that sampling 10,000,000 pairs is a sufficiently large
number. The numbers were even closer when we sampled
100,000,000 pairs, but the training took much longer per
iteration. Each iteration with 10,000,000 pairs took a couple
minutes. Since we were looking at 5,000 1,000-best lists,
there are at most 5,000,000,000 candidate pairs. Thus,
training was performed on about 2% of those pairs at each
iteration.
6.2. Features

There were many instances of the feature types described in
section 3 in the training corpus. The following table gives a
rough idea of how many features types were in the corpus.
The first column is the number of distinct feature types of each
class of the features that had a utility score of more than 1.96.
The second column is number of feature types that occurred in
either the positive set of reference transcripts or the negative
set of 80,271 incorrectly recognized sentences at least five
times. The final column is the total number of feature types in
the whole set.

 util > 1.96 freq > 5 all
n-gram 3,112 74,604 787,828
 1-gram 403 7,094 20,785
 2-gram 1,501 33,180 210,832
 3-gram 1,208 34,330 556,211
x-gram 7,022 152,179 962,567
dependency 2,011 41,689 387,632
dep untyped 1,957 40,858 307,258
Total 14,102 309,330 2,445,285

Table 2 Feature type counts in the training corpus

6.3. Results
Results are shown as absolute changes in WER. The baseline
WER is 26.171%. Each column represents the three methods
of feature selection (described in section 6.2).

Overall, we are seeing that any set of these features is
able to reduce the WER, albeit a small amount. This indicates
that the training method, and features used, are to some degree
advantageous to use. However, the decreases are fairly small,
one third of one percent at most.

 Features\ feat sel. util >1.96 freq>5 all
1 1-gram (1g) -0.12 -0.19 -0.19
2 2-gram (2g) -0.06 -0.13 -0.13
3 3-gram (3g) -0.01 -0.05 -0.05
4 x-gram (xg) -0.16 -0.22 -0.22
5 dependency (dep) -0.03 -0.07 -0.07
6 dep-untyped (depu) -0.02 -0.10 -0.10
7 n-gram (ng) -0.22 -0.20 -0.21
8 ng + xg -0.24 -0.29 -0.29
9 ng + dep -0.20 -0.22 -0.22
10 ng + depu -0.17 -0.24 -0.24
11 dep + depu -0.01 -0.07 -0.06
12 xg + dep -0.17 -0.21 -0.22
13 xg + dep + depu -0.16 -0.24 -0.26
14 ng + dep + depu -0.19 -0.25 -0.24
15 ng + xg + dep -0.24 -0.30 -0.29
16 ng + xg + depu -0.24 -0.30 -0.33
17 ng + xg + dep + depu -0.24 -0.25 -0.25
18 1g + xg + dep -0.27 -0.26 -0.30
19 1g + 3g + xg + depu -0.34 -0.34

Table 3 Absolute WER reduction using our model with varied
features and feature selection techniques

When we look at the results of each feature type
individually (rows 1-6), those with the largest contributions
appear to be x-grams and 1-grams. When we start looking at
combinations of feature types (row 7-18), then n-grams all
together begin to dominate as well. Line 17 represents what
happens when we include all feature types.

When considered individually, the features derived from
the dependency parse trees have a much smaller contribution.
And, when we include all the n-gram features together in
combination with the other feature types (lines 8-17 of the
table), the feature combinations that have the largest WER
reductions are those that include both n-grams and x-grams,
with or without dependency features.

However, if we consider other combinations of features
that do not include each of 1-grams, 2-grams, and 3-grams, the
dependency features do seem to help achieve the largest
reductions in WER. Rows 18 and 19 of the table show the

largest WER reduction of all feature combinations for each
column.

We suspect that these results indicate that the dependency
parse features are largely, but not entirely, redundant with the
2-gram and x-gram features.

When comparing the different methods of feature
selection, we see that typically the more features we use, the
better the results
6.4. Analysis
To better understand these results, we took a closer look at
some of the features in the model that had the highest utility
scores and that were assigned the largest magnitude weights
by the perceptron algorithm. We use the model that had the
most feature selection (utility > 1.96), and with all feature
types (i.e. column 1, row 17).

First, as a sanity check on this technique, the magnitudes
of the feature weights appear to be reasonable. Total scores
(acoustic + lm, log base 10) of hypotheses in these n-best lists
tend to be in the range of -1,200 to -200.

Tables 4 and 5 show those features with the largest
magnitude learned feature weights (wi), and largest utility
scores, respectively. The most obvious observation is that the
n-gram and x-gram features dominate. This makes sense
considering the other results.

Feature x y utility weight
1-gram(probably) 1,224 888 2.309 4.105
2-gram(don’t, know) 2,442 1,802 2.743 3.791
x-gram(and, need) 50 68 2.864 3.780
x-gram(hi, are) 335 163 5.304 3.766
1-gram(another) 462 307 2.575 3.621
…
x-gram(know, any) 89 112 3.194 -3.380
1-gram(floor) 19 33 2.747 -3.718
1-gram(every) 538 523 3.132 -4.011
3-gram(it, would, be) 195 121 2.232 -5.062
1-gram(lotta) 68 78 2.163 -5.417

Table 4 Features with the largest magnitude learned weights

Feature x y utility weight
1-gram(the) 19,339 18,541 19.470 -0.172
1-gram(they) 7,499 7,926 17.916 -0.379
1-gram(it’s) 8,454 8,778 17.808 -0.319
1-gram(it) 12,009 11,656 15.695 0.006
1-gram(all) 3,137 3,634 15.428 -1.729

Table 5 Features with the largest 'utility' scores

7. Conclusions
We have shown, as previously has been shown, that
perceptron based approaches to whole sentence language
model training with syntactic features, can indeed yield
decreases in WER. Although dependency parser based
features do contribute a small amount to the WER reduction,
they appear to be largely redundant with x-gram and 2-gram
features. We suspect that eliminating some of this redundancy
may yield additional decreases in WER. Additionally, if
syntactic and dependency features are to help, we need to take
a closer look at them rather than just blindly generating all
such features and using the entire (or feature-selected) set.

8. References
[1] R. Rosenfeld, S. Chen, and X. Zhu, “Whole-sentence

exponential language models: a vehicle for linguistic-statistical
integration,” Computer Speech and Language, 2001.

[2] Woodland. C. and Povey, D. “Large Scale Discriminative
Training For Speech Recognition,” Computer Speech and
Language, 2000.

[3] Brian Roark, Murat Saraclar, and Michael Collins,
“Discriminative n-gram language modeling.” Computer Speech
and Language, 2007.

[4] F. Och, “Minimum error rate training in statistical machine
translation” ACL, 2003.

[5] Michael Collins, Brian Roark, and Murat Saraclar,
Discriminative syntactic language modeling for speech
recognition. In Proceedings of ACL, 2005.

[6] C. Chelba, et al, “Structure and performance of a dependency
language model,” In Proceedings of Eurospeech, 1997.

[7] C. Chelba, and F. Jelinek, “Structured language modeling,”
Computer Speech and Language, 2000.

[8] Wen Wang and Andreas Stolcke Mary P. Harper, The use of a
linguistically motivated language model in conversational speech
recognition.” In Proceedings of ICASSP, 2004.

[9] M. Hopkins and J. May, “Tuning as Ranking,” In Proceedings of
EMNLP, 2011.

[10] R. Rosenfeld, "A maximum entropy approach to adaptive
statistical language modeling," Computer speech and language,
1996.

[11] M-C de Marneffe and C.D. Manning, “Stanford typed
dependencies manual,” Stanford University, Technical report,
2008.

[12] C. Cieri, et al. “Fisher English Training, Speech,” Linguistic
Data Consortium, Philadelphia, 2005.

[13] R.J. Larsen, and M.L. Marx, An Introduction to Mathematical
Statistics and Its Applications, Prentice Hall, 3rd Edition, 2000.

[14] P. Placeway, S. Chen, M. Eskenazi, U. Jain, V. Parikh, B. Raj,
M. Ravishankar, R. Rosenfeld, K. Seymore, M. Siegler, R. Stern,
E. Thayer, Hub-4 Sphinx-3 system, 1997.

[15] J. J. Godfrey and E. Holliman, Switchboard-1 Release 2,
Linguistic Data Consortium, Philadelphia, 1997.

[16] K. Toutanova, D. Klein, C. Manning, and Y. Singer. “Feature-
Rich Part-of-Speech Tagging with a Cyclic Dependency
Network,” In Proceedings of HLT-NAACL, 2003.

[17] M. P. Marcus, B. Santorini, M. A. Marcinkiewicz and A. Taylor
Treebank-3 Linguistic Data Consortium, Philadelphia, 1999.

[18] J. Nivre, and J. Hall, “Maltparser: A language-independent
system for data-driven dependency parsing,” In Proceedings of
Workshop on Treebanks and Linguistic Theories, 2005.

