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Abstract 
We present a discriminatively trained dependency parser-
based language model. The model operates on utterances, 
rather than words, and so can utilize long-distance structural 
features of each sentence.  We train the model discriminatively 
on n-best lists, using the perceptron algorithm to tune the 
model weights.  Our features include standard n-gram style 
features, long-distance co-occurrence features, and syntactic 
structural features.  We evaluate this model by re-ranking n-
best lists of recognized speech from the Fisher dataset of 
informal telephone conversations. We compare various 
combinations of feature types, and methods of training the 
model. 
Index Terms: Automatic speech recognition, natural language 
processing, language modeling, discriminative training 

1. Introduction 
Respectable performance at automatic recognition of 
conversational speech has eluded speech recognition 
researchers for many years.  Recognition of dictated speech, 
on the other hand, can be quite good. 

It seems ironic, that a sequence of very simple clauses (i.e. 
I went to the doctor, I'm pretty active, I run around a lot, and I 
work out) is more difficult to model and recognize than 
complex newswire sentences, like Doctor Salk on the other 
hand uses everything but the envelope. 

So why is there this discrepancy between recognition of 
conversational speech and dictated speech?  Part of the answer 
surely lies in acoustic factors, like the cadence and 
pronunciation, which are less predictable in informal and 
conversational speech.  Another part is due to the insufficiency 
of the language model (LM) to capture the style of speech.  
Conventional n-gram LMs fall short in modeling 
conversational speech for a number of reasons.  One, for 
instance, is that a sequence of meaningful words is very often 
interrupted by filler words and phrases.  Thus, we see 
sentences like this: 

You know I I went to the an- the doctor you know an- 
I'm I'm pretty active you know I run around a lot and I 
work out and try to you know. 

Here, repetitions (I’m I’m), false starts (the an- the), and fillers 
(you know) severely disrupt the flow of meaningful words. 

In this example, even when using a 4-gram LM, the most 
useful language model cues are beyond the model’s three-
word history.  Thus, the correct recognition of went to can 
have no effect on the correct recognition of doctor. Nor, can 
the correct recognition of any of doctor, active, and work out 
have any effect on the recognition of the others. 

Our model attempts to capture exactly these sorts of long-
distance dependencies.  The structured long-distance 
dependencies, as in went to … the doctor, are identified these 
using an off-the-shelf dependency parser. The unstructured 

long-distance dependencies, like those among doctor, active, 
and work, are simply identified by their co-occurrence. 

We utilize existing discriminative techniques to train the 
model.  This paper builds on earlier work, extending it by 
adding new feature types, new feature combinations, and 
detailed analysis. 

2. Related Research 
In order to include long-distance features in our model, it is 
important that we model entire sentences or utterances rather 
than individual words (as in a conditional language model).  
The use of whole sentence language models for speech 
recognition was pioneered by Rosenfeld et al. [1] around 2001.  
Their model uses shallow parser features, and is trained in the 
maximum entropy/exponential model framework.  Though a 
very interesting and novel technique, decreases in word error 
rate were small. 

Discriminative training methods have been shown to 
perform better than maximum likelihood training in many 
areas, including acoustic modeling [2], n-gram language 
modeling [3], and machine translation [4].  There are various 
ways one may discriminatively train a model, such as 
conditional maximum likelihood estimation (CMLE).  We use 
one based on the perceptron algorithm [5] because it is 
effective, but very simple to implement and use. 

Finally, syntactic methods for language modeling and 
speech recognition have a rich history.  In some of these 
models the parsing is integral to the language model including 
work by Chelba et al. [6][7] or done as a separate process [8].  
We take the latter (and simpler) approach of deriving model 
features from a parse tree, thus keeping the model and 
syntactic analysis separate processes.  Our overall technique is 
very similar to Collins et al [5] except that we use a 
dependency parser rather than a Penn Treebank style syntactic 
and derive different features from the parse tree. 

3. The Model 
Our model and training are very similar to that of Collins et al. 
[5].  The typical method used to score a speech recognition 
hypotheses, s, is the following formula, where a represents the 
acoustic signal.  

log(P(s | a)) = log(Pa (a | s))+α log(Pl (s))  (1) 

Here, Pa(a|s) is the acoustic model, Pl(s) is the language 
model, and α is the language weight. 

We will assume Pl(s) is some baseline n-gram language 
model.  In this paper, as in Collins et al.[5], we identify 
features of the whole sentence, and adjust the overall score of 
the sentence, up or down, depending on the feature’s weight.  
The resulting equation is an almost trivial extension of the 
original equation: 



log(P(s | a)) = log(Pa (a | s))+α log(Pl (s))+ fi (s) ⋅wi
i

n

∑  (2) 

The only change we have made is to add the last term, a 
summation of feature weights to the original score.  The final 
term simply adds the feature weight of each feature in the 
sentence, s, to the overall score.  That is, fi(s) is an indicator 
function, returning one if the feature is present and zero if it is 
not.  The fi features are whole sentence features that capture 
syntactic parse information or other long distance 
dependencies. 
3.1. Parameter estimation 

There are numerous ways to estimate effective values for the 
features weights, wi, in the equation above.  The papers of 
Rosenfeld [1], Roark [3], and Collins [5] share the general 
form of the function above, but estimate the features weights 
very differently. 

Rosenfeld [1] estimates the weights within a maximum 
likelihood, maximum entropy framework—and thus set the 
parameters to maximize the likelihood of a corpus.  Roark [3] 
and Collins [5] on other hand estimate the weights 
discriminatively (i.e. attempting to minimize word error rate).  
In Roark [3], they perform a global optimization over the 
feature weights with the goal of increasing the likelihood of 
low word error rate (WER) candidates (taken from an n-best 
list).  In Collins [5], the feature weights are tuned similarly, 
but with the perceptron algorithm rather than a global 
optimization. 

We use the perceptron algorithm to train the feature 
weights in our model.  We have come across two different 
methods for using perceptron to tune the parameter weights, 
those of Collins [5], and those of Hopkins [9].  The main 
difference between the two approaches is how pairs of training 
examples are chosen. 

The basic idea is the following. Say we’re given two 
sentences from an n-best list, s1 and s2.  s1 is better than s2 in 
that it has lower WER (i.e. wer(s1) < wer(s2)).  However, our 
model prefers s2  to s1 (i.e. P(s1|a) < P(s2|a) ).  In this case, 
we’d like to give a small boost to the weights of all the 
features present in s1 and a small penalty to the weights of all 
the features present in s2.  These small adjustments will bring 
up P(s1|a) and P(s2|a) down. This is exactly what we want: we 

want the language model probabilities to correlate inversely 
with WER as much as possible. 

Collins [5] chooses the pairs, by first selecting the 
sentence on an n-best list that has the lowest WER (referred to 
in their papers as si), and then pairing that with each of the 
other members of the n-best list.  Hopkins [9] chooses the 
pairs by randomly sampling pairs from each n-best list 
(accepting pairs with a probability proportional to the 
difference in WER).  They call this method “pairwise ranking 
optimization.” 

We use a method similar to Hopkins [9]; our method is 
shown in Figure 1.  We randomly choose pairs of ASR 
hypotheses from the n-best lists (that have different WER and 
different features), and use those as the training pairs.  We do 
not sample based on differences in WER.  We also decrease 
the learning rate r, by r/t after each iteration. 

4. N-gram, co-occurrence and dependency 
features 

In this section we describe the features we use in our model: 
standard n-gram features, co-occurrence features, and 
dependency features.  All features are treated as binary, 
whether they are present in a sentence or not, regardless of 
how many times they appear. 
4.1. N-gram features and co-occurrence features 
These are pretty self-explanatory.  We generate features for 
each sequence of up to n words (n=3).  We also generate 
features for each pair of words that co-occurs in a sentence; we 
call these x-grams.  x-grams are similar to the “trigger” word 
pairs of Rosenfeld [10].  

Examples of these features include: 
f1 = xgram(I, I) 
f2 = xgram(I, went) 
f3 = xgram(I, to) … 
fn = xgram(doctor, active) 

4.2. Dependency features 
Dependency features are designed to capture structured long-
distance dependencies, such as between I went to and the 
doctor in the example sentence in the introduction.  To 
identify these dependencies, we use an off-the-shelf 
dependency parser. The parser assigns typed and directed 
links, between pairs of words in each sentence.  The parser we 
use, labels the links with Stanford’s taxonomy of 53 
dependency types [11]. 

Each dependency link is labeled with one of the 53 
grammatical relations.  These include relations like that 
between a verb and its noun subject (nsubj), between a verb 
and its direct object (dobj), and so forth.  Figure 2 shows a 
portion of the parse for the example sentence of section 1.  
This includes a prep link between the verb went and its 
preposition to, as well as a pobj link from the preposition to to 
the object of the preposition doctor. 

 

Figure 2: A portion of a typed dependency parse. 

Inputs:  
nbestk   k n-best lists   
t    iterations 
c   pair count 
wer(s)   word error rate function 
f(s)   returns the features of s 
wi   Initial parameters 
r   Learning rate 

Algorithm: 
loop t times: 
 k = 0 

loop until k = c: 
let nbestk be selected randomly 
let si be selected randomly from nbestk  
let sj be selected randomly from nbestk 
if    si ≠ sj and f(si) ≠ f(sj) and 

sign(wer(si) – wer(sj)) ≠ sign(P(si|a) –P(sj|a): 
k++ 
for l in f(si): 

wl = wl + sign(wer(si) - wer(sj)) × r 
for l in f(sj): 

wl = wl -  sign(wer(si) - wer(sj)) × r 
   

 Figure 1: Perceptron-based pairwise ranking optimization 



Each link in the dependency parse tree becomes one 
feature.  Thus, each feature is a triplet of two words and a link 
type: 

f1 = prep(went, to) 
f2 = pobj(to, doctor) 
The results in section five also show performance of 

untyped dependencies.  By this we mean that we remove the 
edge labels from the dependencies.  Thus, the feature pobj(to, 
doctor) simply becomes dep(to, doctor) and nobj(I, went) 
becomes dep(I, went).  Here are some example matches for the 
feature det(the, school): 

Taught at the same school for seven years… 
I'm in the business school actually 
…in the liberal arts school you need like three years 

5. Feature selection 
Many instances of the features types described in the previous 
section will be relatively useless, or will be redundant with 
existing n-grams. There is no sense inflating the model with 
these features, so we select only those that are estimated to be 
most useful.  If nothing else, fewer features will mean less 
time parsing and training.  Collins[5] suggests that feature 
selection is unnecessary when using the perceptron learning 
algorithm, so we have tried this with and without feature 
selection, and with varying levels of feature selection. 

Identifying those features with the most discriminative 
power is fairly straightforward.  We simply count how often 
they occur in correctly recognized speech and how often they 
occur in incorrectly recognized speech.  Features that occur 
about the same number of times in each have low 
discriminative power.  Those that occur disproportionately 
more in one or the other have high discriminative power. 

To get examples of correctly and incorrectly recognized 
speech, we took 100,000 utterances from our speech corpus 
(the Fisher corpus [12]).  The corresponding 100,000 reference 
transcripts became our set of correctly recognized speech 
(what we call the positive set).  We then ran the same 100,000 
utterances through our speech recognizer.  The output of the 
ASR system—when it was wrong—became our set of 
incorrectly recognized speech (the negative set).  The size of 
the set of incorrectly recognized utterances (i.e. WER greater 
than zero) is 80,271. Table 1 shows some examples of the 
sentences we used. 

Again following Rosenfeld, et al [1][13], we use the 
following method to select the most useful features, from our 
positive and negative sets.  This is an example of a “two-
sample statistical hypothesis test.” Equation 3 yields a 
standard score or z-value. If the z-value is two (i.e. about two 
standard deviations) then there’s a 96% chance that the feature 
has different distributions in the two sets.  The larger the z-
value, the more discriminative power the feature has.  We call 
this z-score the utility. 
 

Positive set (i.e. reference 
transcripts) 

Negative set (i.e. incorrectly 
recognized utterances) 

Good how are you doing Good how are you done 
Do you have any idea what's 
going on 

Give any idea what's going on 

Because I don't like to cook very 
much 

Can I don't like to cook very 
much 

I tend to eat out n/a 

Table 1 Correctly and incorrectly recognized examples 

In this equation, x is the number of positive sentences that 
contain the feature, y is the number of negative sentences that 
contain the feature, n is the number of positive sentences 
(100,000), and m is the number of negative sentences (80,271).  
See tables 3 and 4 for examples. 

x
n −

y
m

x+y
m+n( ) ⋅ 1− x+y

m+n( ) ⋅ n+m
nm( ) (3) 

6. Experimental results 
6.1. Experimental setup 
All experiments were on a subset of the Fisher1 dataset [12].  
We decoded 110,000 utterances of this dataset with the 
Sphinx3 ASR system [14].  The LM is a trigram LM trained 
on Fisher2 [12] and Switchboard transcripts [15]. The acoustic 
model was also trained on Fisher2. 100,000 of these were used 
for feature generation and selection.  The other 10,000 were 
used to generate 1,000-best lists for parameter tuning and 
evaluation. 

For the contrast score weighting of features, we split the 
10,000 n-best lists into two sets: one for training the model 
weights with perceptron, and the other for doing the final 
evaluation. 

We parsed the data with the Stanford POS tagger 
(caseless mode, trained on Switchboard)[16], and the 
MaltParser [18] (using pre-trained English model 
‘engmalt.linear-1.7’.  The POS tagger is trained on speech, the 
parser is not. 

To train the model weights, we set the parameters 
described in section 3 as follows. We randomly sampled 
10,000,000 hypothesis pairs (c), at each of 20 iterations (t).  
The learning rate (r) was initially set to 0.00001, and 
decreased at each iteration.  The initial parameters were all set 
to zero. 

Since the algorithm is randomized, we repeated the 
experiments several times.  The WER were always within 
about 0.01% of one another, and usually within 0.001%.  This 
indicates that sampling 10,000,000 pairs is a sufficiently large 
number.  The numbers were even closer when we sampled 
100,000,000 pairs, but the training took much longer per 
iteration.  Each iteration with 10,000,000 pairs took a couple 
minutes.  Since we were looking at 5,000 1,000-best lists, 
there are at most 5,000,000,000 candidate pairs.  Thus, 
training was performed on about 2% of those pairs at each 
iteration. 
6.2. Features 

There were many instances of the feature types described in 
section 3 in the training corpus.  The following table gives a 
rough idea of how many features types were in the corpus.  
The first column is the number of distinct feature types of each 
class of the features that had a utility score of more than 1.96.  
The second column is number of feature types that occurred in 
either the positive set of reference transcripts or the negative 
set of 80,271 incorrectly recognized sentences at least five 
times.  The final column is the total number of feature types in 
the whole set. 
 
 
 
 



 util > 1.96 freq > 5 all 
n-gram 3,112 74,604 787,828 
     1-gram 403 7,094 20,785 
     2-gram 1,501 33,180 210,832 
     3-gram 1,208 34,330 556,211 
x-gram 7,022 152,179 962,567 
dependency 2,011 41,689 387,632 
dep untyped 1,957 40,858 307,258 
Total 14,102 309,330 2,445,285 

Table 2 Feature type counts in the training corpus 

6.3. Results 
Results are shown as absolute changes in WER.  The baseline 
WER is 26.171%.  Each column represents the three methods 
of feature selection (described in section 6.2). 

Overall, we are seeing that any set of these features is 
able to reduce the WER, albeit a small amount.  This indicates 
that the training method, and features used, are to some degree 
advantageous to use.  However, the decreases are fairly small, 
one third of one percent at most. 

 
 Features\ feat sel. util >1.96 freq>5 all 
1 1-gram (1g) -0.12 -0.19 -0.19 
2 2-gram (2g) -0.06 -0.13 -0.13 
3 3-gram (3g) -0.01 -0.05 -0.05 
4 x-gram (xg) -0.16 -0.22 -0.22 
5 dependency (dep) -0.03 -0.07 -0.07 
6 dep-untyped (depu) -0.02 -0.10 -0.10 
7 n-gram (ng) -0.22 -0.20 -0.21 
8 ng + xg  -0.24 -0.29 -0.29 
9 ng + dep -0.20 -0.22 -0.22 
10 ng + depu -0.17 -0.24 -0.24 
11 dep + depu -0.01 -0.07 -0.06 
12 xg + dep -0.17 -0.21 -0.22 
13 xg + dep + depu -0.16 -0.24 -0.26 
14 ng + dep + depu -0.19 -0.25 -0.24 
15 ng + xg + dep -0.24 -0.30 -0.29 
16 ng + xg + depu -0.24 -0.30 -0.33 
17 ng + xg + dep + depu -0.24 -0.25 -0.25 
18 1g + xg + dep -0.27 -0.26 -0.30 
19 1g + 3g + xg + depu  -0.34 -0.34 

Table 3 Absolute WER reduction using our model with varied 
features and feature selection techniques 

When we look at the results of each feature type 
individually (rows 1-6), those with the largest contributions 
appear to be x-grams and 1-grams.  When we start looking at 
combinations of feature types (row 7-18), then n-grams all 
together begin to dominate as well.  Line 17 represents what 
happens when we include all feature types. 

When considered individually, the features derived from 
the dependency parse trees have a much smaller contribution.  
And, when we include all the n-gram features together in 
combination with the other feature types (lines 8-17 of the 
table), the feature combinations that have the largest WER 
reductions are those that include both n-grams and x-grams, 
with or without dependency features. 

However, if we consider other combinations of features 
that do not include each of 1-grams, 2-grams, and 3-grams, the 
dependency features do seem to help achieve the largest 
reductions in WER.  Rows 18 and 19 of the table show the 

largest WER reduction of all feature combinations for each 
column. 

We suspect that these results indicate that the dependency 
parse features are largely, but not entirely, redundant with the 
2-gram and x-gram features. 

When comparing the different methods of feature 
selection, we see that typically the more features we use, the 
better the results 
6.4. Analysis 
To better understand these results, we took a closer look at 
some of the features in the model that had the highest utility 
scores and that were assigned the largest magnitude weights 
by the perceptron algorithm.  We use the model that had the 
most feature selection (utility > 1.96), and with all feature 
types (i.e. column 1, row 17). 

First, as a sanity check on this technique, the magnitudes 
of the feature weights appear to be reasonable.  Total scores 
(acoustic + lm, log base 10) of hypotheses in these n-best lists 
tend to be in the range of -1,200 to -200.  

Tables 4 and 5 show those features with the largest 
magnitude learned feature weights (wi), and largest utility 
scores, respectively.  The most obvious observation is that the 
n-gram and x-gram features dominate.  This makes sense 
considering the other results. 

Feature x y utility weight 
1-gram(probably) 1,224 888 2.309 4.105 
2-gram(don’t, know) 2,442 1,802 2.743 3.791 
x-gram(and, need) 50 68 2.864 3.780 
x-gram(hi, are) 335 163 5.304 3.766 
1-gram(another) 462 307 2.575 3.621 
…     
x-gram(know, any) 89 112 3.194 -3.380 
1-gram(floor) 19 33 2.747 -3.718 
1-gram(every) 538 523 3.132 -4.011 
3-gram(it, would, be) 195 121 2.232 -5.062 
1-gram(lotta) 68 78 2.163 -5.417 

Table 4 Features with the largest magnitude learned weights 

Feature x y utility weight 
1-gram(the) 19,339 18,541 19.470 -0.172 
1-gram(they) 7,499 7,926 17.916 -0.379 
1-gram(it’s) 8,454 8,778 17.808 -0.319 
1-gram(it) 12,009 11,656 15.695 0.006 
1-gram(all) 3,137 3,634 15.428 -1.729 

Table 5 Features with the largest 'utility' scores 

7. Conclusions 
We have shown, as previously has been shown, that 
perceptron based approaches to whole sentence language 
model training with syntactic features, can indeed yield 
decreases in WER.  Although dependency parser based 
features do contribute a small amount to the WER reduction, 
they appear to be largely redundant with x-gram and 2-gram 
features.  We suspect that eliminating some of this redundancy 
may yield additional decreases in WER.  Additionally, if 
syntactic and dependency features are to help, we need to take 
a closer look at them rather than just blindly generating all 
such features and using the entire (or feature-selected) set. 
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