
CLASSIFYING ENTITY RELATIONS IN NATURAL LANGUAGE

An Honors Project

Presented by

Benjamin E. Lambert

Submitted June 2003

Guidance Committee Approval Signatures:

Andrew McCallum, Computer Science

David Jensen, Computer Science

CLASSIFYING ENTITY RELATIONS IN NATURAL LANGUAGE, Ben-
jamin E. Lambert (Andrew McCallum, Guidance Committee Chair) Department of
Computer Science, University of Massachusetts Amherst, Amherst, MA, 01003

In an effort to expand upon previous work, this research investigates the au-
tomation of classifying relations between entities (such as organizations, people and
locations) in natural, written language. This research differs from earlier endeavors in
the types of relations sought and the assumed information availability. More general
relations, such as located at and part of, are sought on a per document basis with
the assumption that complete knowledge of co-reference is available. To automate
this task, three feature-based machine learning algorithms are used to train software
classifiers. Using only relatively simple features, such as sentence tokens, digrams,
and trigrams, many of these relations can be identified. The middling results achieved
with few features show this task to have a potential and support further study.

Honors Project (499P)

Classifying Entity Relations in Natural Language

Benjamin E. Lambert

June 9, 2003

1 Introduction

Much of the information contained in natural, human language could be of great

use if it were available to computer systems. Though recent advances in natural

language processing have expanded the extent of the availability of this information,

the incredible complexity of natural language leaves much of this information in a form

not readily decipherable. Decoding natural language often requires the consideration

a tremendous volume of data. Rather than using the data to manually compile

knowledge bases and construct grammars, one might use machine learning to mitigate

the tedium of doing so, if not surpass the practical limitations. Only in the last decade

or so, with the increasing availability of annotated corpora of data and computer

systems capable of handing the rich datasets, has machine learning become a very

powerful tool for natural language processing (Llúıs Màrquez, 2000).

1

Machine learning has been applied to many natural language tasks. Part of speech

tagging, word sense disambiguation, context sensitive spell checking, grammatical

parsing, and information extraction are among the many. All of these both seek

and rely, to varying degrees, on information from two fundamental linguistic sources:

syntax and semantics. Parsing, for instance, seeks a syntactical analysis, whereas

information extraction is inherently semantic deduction. Most computations on nat-

ural language rely partially on both. As an example, word sense disambiguation is an

instance of semantic inference, but will likely draw upon syntactical information, such

as the word’s part of speech, and semantic information, such as the word’s definitions

for that part of speech.

The research described in this paper examines the extraction of semantic infor-

mation from natural language, specifically how the entities described in a written

language source are related to each other. In other words, given two entities in a

document, how are they related, if at all? Consider this sentence from the New York

Times: “Israeli troops maintained their hold today on the Palestinian town of Beit

Hanun, in the northern Gaza Strip.” This sentence alone provides the reader with

several pieces of information, including: Israeli troops maintained control of Beit Ha-

nun, Beit Hanun is a Palestinian town, Beit Hanun is in the northern Gaza Strip.

The information that can be described relationally is the focus of this research. The

phrase “Beit Hanun is located within the Gaza strip” describes Beit Hanun in relation

2

to the Gaza Strip. In this case, the relation is of the type located in. The experiments

described in this paper measure the extent to which machine learning may be applied

to extracting this relational information.

In this study, relational information is extracted from newspaper articles, specif-

ically New York Times articles and Associated Press reports. Though the relational

information provided in any sample of language may be profuse, we focus on a few

well-defined types of relations provided by the dataset. These relations may only exist

between specific types of entities. The dataset defines relations between these fives

types of entities: person, place, organization, facility, and global/political entity. The

relations defined between these entities are: located near, located at, part of, role, and

social. Examples of the latter two relations, role and social, would be an executive to

a corporation and a pair of siblings, respectively. Results so far have shown that infer-

ring these relations is difficult to achieve with high accuracy. The methods described

in this paper were able to recall around half of the examples of each relation type and

do so with approximately 50% precision. Though these numbers are not as good as

one would generally desire to produce useful applications, they were achieved using

only a small portion of the information available and consequently support the need

for further study. Similar techniques have been able to infer more specific relations,

such as that between a person and his or her birthplace, with greater accuracy (see

related work, section 6).

3

Automating the classification of these relations has many direct and indirect ap-

plications. The relation between two entities in a sample of natural language is often

one of the more pertinent facts contained within it (Three Mile Island is where?).

The general task of identifying entities in natural language and classifying their rela-

tions also plays a key role in many endeavors that fall under the realm of information

extraction and language understanding. Human-computer interaction may be one of

the most useful applications of language understanding, whereby complex or ambigu-

ous commands may be better interpreted. Direct applications of this research include

data mining the described relational data. Specifically, this may include tracking an

organization’s changing locations or social network analysis to flag potential terrorist

cells. Another application is identifying documents in which two entities are related

to enhance searching for documents. For instance, one may search for documents that

discuss the relation of two entities, rather than documents incidentally mentioning

both.

This paper first formally describes the task in section 2. The experiments per-

formed used both data that was provided (and so assumed to be attainable) as well as

generated data; the methods for acquiring both types of data are detailed in section

3. Section 4 describes the machine learning algorithms used and the specific features

from the data available to the algorithms. Section 5 presents the results, followed by

sections describing related research and future research.

4

2 Formal Task Description

Relation classification may done at many levels. Zelenko et al. (2002) seeks to iden-

tify relations from individual sentences. That is, given a single sentence mentioning

two entities, how are those entities related? Another approach, is to identify rela-

tions globally, utilizing information from an array of documents and databases. The

research described in this paper attempts to classify relation examples in individual

documents, specifically news articles.

Classifying relations in a multi-sentence document has one obvious advantage

over a single-sentence classification: there is more information available. However,

because much of this additional information may be extraneous, only the sentences

that mention two entities are considered when classifying their relation. So, for any

pair of entities in a document, all the sentences that mention both are considered.

Thus where Zelenko et al. (2002) use a single sentence, we may use several. All co-

reference resolution is assumed to have been done, so mentions may be proper names,

pronouns, or other mentions. With the assumed co-reference, most related pairs of

entities are mentioned together in several sentences for each document.

To more precisely describe the problem, entities, mentions and relations are for-

mally defined as follows.

Definition 1 An entity Ei is the ith entity in a document, where Ei is designated by
at least one noun or phrase.

5

These entities are real-world manifestations; the document only mentions them.

All entities in a given document are mentioned at least once and usually several times.

Definition 2 A mention Mij is the jth word in the document that refers to the entity
Ei.

Though mentions provide the data necessary to retrieve clues about relations, the

relations are defined between entities. Relations do not persist across documents.

Relations are assumed to not persist because the data does not specifically list per-

sistent relations, such as a city to a country. Other relations examined here are not

necessarily persistent, such as the location of an organization, which may relocate, so

no relations are considered persistent.

Definition 3 A relation Rxy is the relation between two entities Ex and Ey.

Here is an example of a pair of entities, examples mentions, and their defined

relation: E1 = The White House, E2 = Washington, D.C., M11 = “The White House”,

M21 = “Washington”, R12 = located at. The dataset describes many such relations,

but there are many other pairs of entities adhering to the constraints (i.e. mentioned

in the same sentences) that do not have a defined relation. These pairs are assigned

relations but their type is set to unrelated. These unrelated relations are the most

common in the dataset, comprising approximately two-thirds of the qualified entity

pairs. Thus there are six relation types: located near, located at, part of, role, social,

and unrelated.

6

For each document, relations are created for every pair of entities mentioned in

the same sentence at least once. Pairs of entities that are not mentioned in the same

sentence at least once are ignored whether they have defined relations or not. Ignoring

these pairs, relatively few of the defined relations (perhaps 5-10%) and a very large

number of unrelated pairs (tens of thousands) are lost. The algorithm used to create

lists of relations for each document is as follows:

For all entity pairs Ei, Ej where i 6= j, if their respective mentions Mia

and Mjb are in the same sentence for some a and b, then create the relation
Rij. If the relation Rij is defined in the data, set the type to the defined
type, otherwise set the type to unrelated.

Many of these relations are not commutative, Rij 9 Rji. For example, the White

House is located at Washington, D.C., but Washington, D.C. is not located at the

White House. In this study, the order is not considered; if Rij = located at, then either

i is located at j or j is located at i. Making the distinction between orderings may be

useful or necessary in many cases as many of the relations studied are hierarchical.

The distinction is ignored here for simplicity.

Being defined on a per-document basis, the software representation of each relation

retains access to the original document and data the provided about the document,

such as the location of each mention in the document and the entities’ types. Only

some of this available information is used. The information is used in the form of what

we call feature functions or features for short. Feature functions are generally boolean

7

functions, often mapping a word or pattern to the boolean value of its presence in

the document. The specific features used are described in section 4.1.

Disparate sets of relations are used for training and then testing software classifiers.

In the training phase, a set of relations is given as input to a classifier trainer. The

classifier trainer, using one of the machine learning algorithms described in section 4.2,

trains a software classifier with each relation’s features. This classifier, in turn, can

take an unknown relation example and its features as input and output a prediction

as to the type of relation.

Experiments are performed by first splitting the documents into two sets, then

creating a set of relations from each. One set provides the input to the classifier

trainer; the other set is used to test the resulting classifier. Although the actual

relation types of the testing examples in are unknown to the classifier, they are known

and used to check the classifier’s predictions.

One hundred and thirty articles from The New York Times and the Associated

Press news service were used as train and test documents. In the articles, there

were approximately six-thousand pairs of entities mentioned in the same sentences,

that is six-thousand distinct Rxy’s. Of these, approximately two-thousand pairs were

engaged in one of the five defined relations and approximately four-thousand pairs

did not have defined relations and were designated as unrelated.

8

3 Assumptions and Difficulties

In generating the sets of relations, several assumptions were made about the informa-

tion available. For one, we assume that the entities in a document can be identified.

In the real-world of non-annotated data, identifying the entities cannot be taken for

granted. This and other assumptions, such as identifying an entity’s type, as well as

how these tasks could be automated, are described in this section. Also described are

the solutions used to gather additional data that was not provided, such as sentence

boundaries.

3.1 Mention Identification

To find relations in a raw document, one first needs to identify the entity mentions.

Proper name mentions are often found easily, for example, when preceded by titles,

such as Mrs. or Dr. In a properly styled English text, sequences of capitalized words

are usually proper names. In the less structured environment of the World Wide

Web words are frequently capitalized for other reasons, such as a hyperlink to “World

News.” On news websites, many strings of capitalized letters can be identified to not

be entity names if they are hyperlinks.

One complication to identifying proper names is locating the extent of a name. An

example of this difficulty occurs when an organization’s location is part of its name.

Should the words “City University of New York” be treated as one institution or one

9

institution and a city? Research has shown that finding the extent of a proper names

can be automated with fairly high accuracy (Wacholder et al., 1997). This problem

is assumed to be solved as data is annotated with all mentions and their extents.

Although proper names are relatively easily identified, other types of entity men-

tions are not. A facility, for example, may be referred to only as “the administration

building.” When also referred to by a proper names, it is likely to be very diffi-

cult to resolve co-reference for these types of mentions. These mentions are assumed

known, as well as their co-reference. This may be a rather large assumption, and its

automation requires further study.

One type of mention that is easily found, is the pronoun. These can be looked up in

tables. Unfortunately, a pronoun is practically useless without knowing its antecedent.

Pronoun co-reference resolution is also difficult to automate but is assumed to have

been done.

3.2 Entity Identification or Co-Reference Resolution

Working at the document level, a list of all mentions is not very useful by itself as

many may refer to the same entities. What is really needed is a list of the entities

and their corresponding mentions. Given all the mentions, finding distinct entities

in a document is equivalent to resolving the co-reference. Although this resolution is

assumed to have been done by this study, in many cases it is difficult to automate.

10

Resolving co-references among proper names is generally easier than among pro-

nouns, but is very difficult in some cases. For example, the proper names “George W.

Bush,” “George H. W. Bush,” and “Mrs. Bush” all refer to distinct people. Likewise,

“President Bush” and “former President Bush” refer to distinct people. The gender

implied by first names or titles often helps to distinguish the names. In cases such

as the latter example given here, the distinction may be difficult if not impossible to

make without additional information. Recognizing which names refer to which enti-

ties is especially important when looking for their relations; the importance can be

seen in the preceding examples where all parties are engaged in social relations. With-

out the machinery to identify these as distinct entities, inferring meaningful relations

among them is impossible.

The annotated dataset provided the enticing opportunity to not only use proper

name mentions, but all referents. Not only can we assume that there is no need to

disambiguate to whom “Mr. Clinton” and “Bill Clinton” refer, but there is also no

need to resolve pronoun and other co-references. Unlike much of the other information

assumed by this study, this information cannot be discovered automatically with very

high accuracy. This research assumes the availability of all co-references. Morton

(2000) provides a good description of co-reference resolution for similar tasks. With

the ability to accurately locate all entity mentions and resolve their co-reference, lists

11

of all entities along with all of their corresponding referents can be created. These

lists are provided by the dataset, making their deduction unnecessary and assumed.

Although automating pronoun co-reference with useful accuracy is likely to add

significant computational overhead, it is very compelling. Even if co-references can-

not be resolved with high accuracy, the lack of any co-reference data will render some

relations impossible to identify. Sentences explicitly describing a relation between

two entities often refer to at least one of the two entities with a pronoun. This

is not surprising as sentences with many proper names are often cumbersome. Al-

though knowledge of pronouns and other referents potentially allows more relations

to be discovered, if co-reference resolutions are not highly accurate they may degrade

performance. Imperfect co-reference resolution might be used more effectively by in-

cluding a confidence measure, where data provided by tenuous pronoun resolutions

is weighted less heavily.

3.3 Entity Type Identification

One piece of information that can often be acquired, and is very powerful, is an entity’s

type. Related research (Roth and tau Yih, 2002), detailed in the related work section

of this paper, demonstrates how deeply intertwined relation and entity types are. In

essence, this is due to the fact that most relations can only exist between certain

types of entities. For instance, a social relation can only be defined between people.

12

The dataset used provides all entity types, so this is assumed to be known. Generally,

acquiring this information is a bit more difficult than a table lookup, though it can

be done to an extent.

Some entity types are easily identified. For instance, entity names beginning with

a title, such as Mr. or Mrs., almost always refer to people (there are always excep-

tions, such as “Mr. Tux”). Proper names ending with strings like “Corporation”

or “Ltd.” likely designate organizations. Other names require the use of context or

global knowledge to identify type and are consequently difficult to identify compu-

tationally. An example of this is the name “Hank Hill,” which may be a person or

place. Wacholder et al. (1997) use the “Nominator” system to correctly identify 99%

of entity types after discarding 21% of low confidence decisions.

3.4 Language Structure

Many natural language processing approaches treat data as an unstructured collection

of words. These generally focus on word presence, frequency, and combination; this

is often called the “bag of words” approach. The research described in this paper

utilizes the structure of each document, in particular the word order and sentence

boundaries. Although not included in this study, grammatical sentence parses may

be one of the richer sources of structural information. Like co-reference resolution,

parsing is difficult and usually cannot be done with very high accuracy.

13

Sentence boundaries are used in a few ways; one is to determine whether two

entities are mentioned in the same sentence. They are also used when creating fea-

tures from the text, as features are only created from sentences that mention both

entities (as opposed to from the entire document). In an appropriately styled English

document with two spaces between sentences, locating sentence boundaries is trivial.

Data used in this research, unfortunately, separated sentences with only one space.

Fortunately, of all the necessary prerequisites, finding these sentences boundaries may

be the easiest.

Every sentence boundary in the dataset is of the form: period, white space, cap-

ital letter. The non-triviality of finding sentence boundaries is due to the presence

of this pattern mid-sentence. This usually occurs when a proper name follows an

abbreviation. A few simple rules identified nearly all these instances. One rule that

catches almost all false sentence boundaries is that sentences cannot end with a title

or single capitalized letter (as in a middle name).

4 Methodology

To classify relations, we use relation examples from half of the documents to train

software classifiers. These classifiers are essentially functions that map sets of features

to relation types. Features may describe the relation example in many ways; for

example, a feature may attest to the presence of a word in a sentence. Once trained,

14

a classifier takes a set of features, a feature vector, as input and outputs a predicted

relation type. The features used to describe each relation example are described in

section 4.1. A brief description of each of the learning algorithms used to train the

classifiers is given in section 4.2.

4.1 Features Used

4.1.1 Entity Type

Perhaps one of the most basic, yet powerful feature types is the entity type. For each

of the entities in a relation pair, a feature is added to the feature vector denoting

the entity’s type. For instance, given a pair of entities where one is a location and

the other is a facility, the features “LOCATION” and “FACILITY” are added to

the feature vector. Another feature is added to describe composition of the pair. In

this case, the lexicographically later entity type is appended to the other (as we are

ignoring the order); this feature describes the conjunction of the two types.

4.1.2 The “Bag of Words”

Another basic feature type used is the set of tokens present in sentences mentioning

both entities. Given an entity pair, all sentences that mention both entities (there may

be several) are retrieved from the sentence file. Each of these sentences is tokenized,

or broken into individual words, and each token becomes a feature. Formally, given

Ei and Ej, tokenize all sentences that contain both Mia and Mjb, for some a and b,

15

and add each token to the feature vector. These features do not capture any of the

sentence structure, but in many cases provide valuable information. For instance,

the mere presence of the word “brother” may indicate a social relation, specifically

a fraternal one. This feature is used slightly differently from the traditional “bag of

words” approach, where all words in the entire document are used.

Another difference from many “bag of words” approaches, is that stopwords are

not removed. The stopwords removed are generally a few hundred of the most com-

mon English words, such as articles and prepositions. When looking for relations

however, ignoring these words may be detrimental. For example, one of the relations

sought is the located at relation. For this relation, the stopword “at” may be crucial

to identifying it. One experiment of interest would be to determine how important

these stopwords are to classifying relations like at as their high frequency will limit

their usefulness.

Another common technique used in natural language processing, not used here, is

stemming. Stemming involves removing common word endings, so that the tense does

not interfere with the semantics. For example, rather than use the word “learning”

as a feature, stemming would remove the ending and use the feature “learn”.

4.1.3 Digrams, Trigrams and N-Grams

Digrams, trigrams and n-grams are similar to sentence tokens, though they begin to

capture the word order. Digrams are pairs of adjacent words. Formally, for every

16

word in a sentence (besides the last), a space and the succeeding word are appended

to create the digrams. Similarly, trigrams are 3-tuples of adjacent words, created from

all sequences of three consecutive words. Digrams and trigrams are only created from

the sentences mentioning both entities in each relation example. Features could also

be created from all n consecutive words, with n greater than three, called n-grams;

experiments showed that 4-grams and 5-grams were not useful, so they were not used.

Creating digrams and trigrams directly from the sentences does not capture many

otherwise useful patterns. These patterns are formed when similar entities occupy the

same role in a sentence. To put the patterns to work, all mentions of the two entities

in their mentioning sentences are replaced by their corresponding entity types. For

example, the clause, “UMass is located in Amherst,” would become, “ORGANIZA-

TION is located in LOCATION.” The trigram “located in LOCATION” will more

often assist with relation classification than the specific, “located in Amherst” which

will only help find entities that are located in Amherst.

4.2 Machine Learning Algorithms

Using all the features listed above, one might attempt to manually construct a set

of rules for determining the relation of an entity pair. However, considering that the

presence of individual words or combinations of words may constitute a rule and that

there are around 100,000 or so English words, this may not be practical. Feeding the

17

features to a machine learning algorithm may save a good deal of time and may also

pick up on patterns that would have otherwise gone unnoticed.

Three algorithms were used to train classifiers with the features described in the

previous section. The algorithms were: naive Bayes, maximum entropy, and winnow.

Although each algorithm displayed strengths and weaknesses, maximum entropy gen-

erally appeared most successful. The MALLET (MAchine Learning for LanguagE

Toolkit) (McCallum, 2002) implementations were used for all algorithms. Each algo-

rithm is described briefly in the following sections.

4.2.1 Naive Bayes

Given an unknown relation R, with a set of features, x = < x1, x2, ..., xn >, we want

to compute the probability that relation R is of each known type of relation based on

the training examples. If we assume that the probabilities of each feature occurring

are independent, Bayes’ theorem allows us to compute this probability. That is, we

can compute the posterior probability that R is some relation, say r (where r=located

at, part of, etc.), P (r|x), from the conditional probabilities that given relation r, the

example will have the feature xi, P (xi|r). Bayes’ theorem defines this probability as:

P (R|x) =
P (x|R)P (R)

P (x)

18

The naive Bayes algorithm is naive because of its incorrect assumption that the

probabilities of each feature are independent. They are not independent in this case;

for example, articles depend on their nouns. The probabilities must be independent

to calculate the probability of set of features all occurring. The probability of this

conjunction of events is only equal to the product of their probabilities if the events

are independent. Despite the incorrect assumption, this algorithm often performs

comparable to other learning algorithms. Naive Bayes computes the probability that

R is of relation type, r, given the set of features, x, as:

P (R = r|x) =
n∏

i=1

P (xi|R = r)

The training phase of this algorithm calculates the conditional probabilities P (xi|r)

for each relation type. The classifier then easily computes this product to make the

classification. The classifier will ignore features that it has never seen before (es-

sentially words not in its lexicon), as it knows nothing of their probabilities. The

MALLET implementation of naive Bayes uses a slightly more sophisticated algo-

rithm to ensure that in the case that P (xi|r) = 0 for some i, the entire product is not

zero. This is described in detail in McCallum and Nigam (1998).

19

4.2.2 Maximum Entropy

As implied by the name, this algorithm seeks to maximize the entropy of its classifi-

cations. As a simple example, given no information with which to classify relations,

a maximum entropy classifier will classify each relation type of the six with 16.7%

chance. Fortunately, the training data provides information to make more rational

decisions. Given the statistic that 50% of all training pairs mentioned in sentences

containing the word “at” are of the type at, the classifier obeys this statistic when

making classifications and makes all other decisions with maximum entropy. With

this statistic, or constraint, 50% of relation pairs mentioned in sentences containing

the word “at” will be classified as at, the remaining 50% will be classified as one of

the other relations with 20% chance. The relation pairs mentioned in sentences not

containing the word “at” will be classified to each relation with equal probability,

16.7%.

To enforce these constraints, the maximum entropy algorithm ensures that the

expected value of each feature in the training data is consistent with the classifications

made on the testing data. So the distribution of P (r|x), where x is a relation example,

must be consistent with this constraint:

1

|T |
∑

x∈T
fi(x, r(x)) =

1

|T |
∑

x∈T

∑

r

P (r|x)fi(x, r)

20

where T is the set of training examples, r(x) is the relation type of example x, and

fi(x, r) is a the value of relation r’s ith feature for the relation example x.

Modeling the constraints in this way we are guaranteed a unique distribution

to classify testing examples. It is also the case that this distribution is exponen-

tial (Pietra et al., 1997). The distribution is described by the following exponential

distribution function:

P (r|x) =
1

Z(x)
exp(

∑

i

λifi(x, r))

where λi are the parameters associated with each feature and Z(x) is a normalizing

factor defined as:

Z(x) =
∑

r

exp(
∑

i

λifi(x, r))

The training stage of the maximum entropy algorithm calculates the optimal set

of parameters λi. Although the details are beyond the scope of this paper, the search

space has a unique maximum likelihood and no local maxima. Therefore, the optimal

set of parameters can be found by hill-climbing beginning from an arbitrary point.

The MALLET implementation of maximum entropy uses improved iterative scaling to

hill-climb and Gaussian priors to reduce over-fitting. Details on these two techniques

are described in Nigam et al. (1999).

21

4.2.3 Winnow

The winnow algorithm uses mistake-driven multiplicative update to calculate weights

for each feature in a linear separator function. The algorithm takes three parameters:

a threshold θ, a constant promotion multiplier α, and a constant demotion divisor β.

The algorithm is mistake-driven in that it only updates the weights when a relation

is improperly classified. During training, the algorithm gives a yes/no decision on

each training example for each relation type (so it may say yes to multiple relations

types). Each relation type has a set of weights, w1, w2, ..., wn, corresponding to each

feature, which are initially all set to one. A training example is claimed to be the

relation corresponding to the weights if the following inequality is true:

n∑

i=0

(wixi) > θ

If this inequality correctly identifies the relation, nothing happens. If it incor-

rectly makes the affirmative decision, then the weight of each feature corresponding

to the training example is demoted via division by the constant parameter β. If the

algorithm fails to identify the correct relation, the weights of each feature pertaining

to that example are promoted via multiplication by the constant parameter α. For

the experiments described in this paper, parameters were set to α = 2, β = 2, and

θ = n/2, where n is the number of distinct features for a relation’s training examples.

22

Winnow may be used as an online algorithm, continuously updating the weights

as each test example is classified. For testing purposes, all weights remain constant

after the training phase. After training, each test example is classified by calculating

the above sum for each relation type; the relation type with the greatest sum, whether

or not is is greater than the threshold, is returned as the predicted relation.

5 Experiments

To measure success with classification, precision and recall are used, as accuracy

alone does not describe the success well. Assuming that finding related pairs is

more important than finding unrelated pairs, we should be more concerned with how

many and how precisely we can find related pairs, than how accurately we can find

unrelated pairs. Recall and precision measure those two quantities, how many and

how precisely, and f-measure is an inverted average of the two.

Precision(T) =
Number of pairs correctly classified as type T

Number of pairs classified as type T

Recall(T) =
Number of pairs correctly classified as type T

Number of pairs of type T

F −Measure(T) = (
1
a

+ 1
b

2
)−1

23

Accuracy =
Total number of pairs correctly classified

Total number of pairs

Because the dataset contains so many entity pairs that are unrelated, any classifier

may be compelled to classify all pairs as unrelated. In doing so, it would on average be

about 68% accurate. Randomly classifying relations with probability equal to their

empirical distribution in the training set would achieve approximately 48% accuracy

on average. Classifying in this way, proportional to the empirical distribution, one

would expect the recall and precision for each relation type to be equal to its frequency

in the training set. For example, role relations constitute approximately 14% of the

examples. If making the role classification arbitrarily 14% of the time, we should

statistically be right 14% of the time. Likewise, the recall would on average be

proportional to the frequency in the training data.

Part Role At Near Social Unrelated
Percentage (%) 4 14 10 1 3 68

Table 1: Approximate distribution of relation types

If we are indeed more interested in the related examples than the unrelated ones,

the frequency of each relation (shown in table 1) serves as a good absolute minimum

to beat. In other words, if we cannot achieve 14% precision and recall for role relations

then we may as well just classify randomly.

24

Another number we would like to beat for each relation type, is the proportion

of that relation to all related types. Of all the defined relations, about a third of

them are at relations. The extent to which this number can be surpassed in the

precision and recall of each relation is an indicator of how well related pairs can be

distinguished among the five relations, as opposed to being identified as only related

and then randomly assigned a specific relation.

It is also worth noting how few of the relations are of the type near. With so

little training data, classifiers perform poorly on this relation and rarely classify any

relations as near. Results for classification of unrelated pairs are also included, but

may also not be of great interest.

5.1 Success of individual features

To judge which individual types of features may be most relevant to the classification,

experiments were initially isolated to individual feature types. Some features prove

to be quite powerful when used alone.

5.1.1 Entity Type

The correlation between entity type and relation type, as can be seen in (Roth and

tau Yih, 2002), was evident in the results of only using the entity type feature (table

2). Of the three algorithms, using only this feature, naive Bayes is best able to

find related pairs. Although naive Bayes identifies related pairs best, its accuracy is

25

lowest because it predicts many unrelated relations to be related, whereas the other

two almost always predict unrelated. Of features most correlated with relation types, a

few of the best are: “PERSON” and “PERSON-PERSON”, which are both correlated

with social and role relations; “GPE-GPE” which is highly correlated with at; and

“PERSON-ORGANIZATION” which is highly correlated with role. The “PERSON-

PERSON” feature allows naive Bayes to recall 100% of the social relations.

Naive Bayes Maximum Entropy Winnow
Prec Rec F1 Prec Rec F1 Prec Rec F1

Part 12.9 6.11 8.29 44.44 3.05 5.71 44.44 3.05 5.71
Role 38.28 35.96 37.08 0 0 0 0 0 0
At 56.86 31.41 40.46 52.78 6.86 12.14 0 0 0

Near 25 14.29 18.18 0 0 0 0 0 0
Social 18.09 100 30.64 0 0 0 0 0 0

Unrelated 75.55 75.18 75.36 71.28 99.2 82.96 70.88 99.78 82.88
Accuracy 63.04 71 70.81

Table 2: Precision, recall, and f-measure using only entity type features

5.1.2 Sentence Tokens

Tokens alone in some, specific cases can provide strong evidence of a relation. For

example, one of the most correlated of these features was “kilometer”, which was

highly correlated with both at and near. After “kilometer” in relevance was the

feature “at”. Though this feature is probably most correlated with the at relation,

it is generally a very common feature. This correlation would seem to justify the

decision to include stop words as features. In this experiment, results shown in table

26

3, naive Bayes sacrificed recalling unrelated pairs almost entirely (20.91%), in favor

of related pairs. This may be because related pairs are more likely to have words in

common than unrelated pairs. That is, there are likely to be common features, such

as “at”, which boost the probabilities of the defined relations. Whereas unrelated

relations are less likely to have similar words and so their features will tend to have

lower probabilities (many P (xi|r = unrelated) with low values). The product of these

lower probabilities will be especially low, and so deemed an unlikely classification.

Naive Bayes Maximum Entropy Winnow
Prec Rec F1 Prec Rec F1 Prec Rec F1

Part 3.9 15.27 6.21 16.67 0.76 1.46 33.33 0.76 1.49
Role 19.44 48.54 27.76 20.24 23.15 21.59 26.19 2.47 4.52
At 15.08 46.21 22.74 19.18 10.11 13.24 20 1.08 2.05

Near 0 0 0 0 0 0 0 0 0
Social 15.52 16.98 16.22 28.57 11.32 16.22 0 0 0

Unrelated 73.02 20.91 32.52 72.65 80.55 76.40 70.92 94.63 81.07
Accuracy 26.55 61.4 67.51

Table 3: Precision, recall, and f-measure using only token features

The two most correlated token features, that is the two most closely corresponding

to a relation type, were the strings “(AP)” and “ ”. These two strings lead off every

article from the Associated Press preceded by the location of the story. These tokens

are treated as part of the first sentence. Examining the results showed that one

reason this is useful is that entities mentioned in the first sentence are often unrelated.

Another reason is that entities mentioned in the first sentence are often located at the

27

location of the story (which leads off the first sentence). These features are an example

of some of the very useful features resulting from a similar style in the documents.

Features based on a common document style will not help when classifying relations

in another domain, and so have limited use.

Other features that were highly correlated to relations were frequently mentioned

places, such as France and the U.S. The words “where”, “friend”, and “near” also

appear to be fairly well correlated to at, social, and near respectively.

5.1.3 Digrams

Digrams tend to be more useful than the raw set of tokens, as they are able to carry

information about the word order. Using only digrams, the classifier is able to identify

a fair number of relations. Results are shown in table 4. A few of the most relevant

digrams are: “GPE, GPE”, which is very highly correlated to at, “Boston, MA” for

example; “GPE PERSON”, which is correlated with role, as in “British diplomat”;

and “ORGANIZATION PERSON” which is correlated with role, such as “Commerce

Ministry official”.

With digrams, naive Bayes continues to sacrifice the identification of unrelated

pairs in favor of recalling related pairs. Naive Bayes does not indiscriminately choose

related types, but has some heuristics toward which relation. This can be seen in the

proportionately high recalls for part, role, at, and social. Although entity type features

are not used directly in this experiment, entity mentions are replaced with their types

28

in the digrams; this may help explain the very high recall for social relations with

naive Bayes. As opposed to naive Bayes, maximum entropy is able to retain over 70%

precision without exclusively predicting unrelated.

Naive Bayes Maximum Entropy Winnow
Prec Rec F1 Prec Rec F1 Prec Rec F1

Part 8.41 62.6 14.83 43.69 34.35 38.46 21.31 19.85 20.55
Role 34.92 36.18 35.54 51.92 33.48 40.71 34.01 22.7 27.22
At 18.73 46.93 26.78 34.59 23.1 27.71 19.64 11.91 14.83

Near 0.51 9.52 0.97 0 0 0 0 0 0
Social 7.05 73.58 12.87 35 13.21 19.18 3 5.66 3.92

Unrelated 78.3 3.69 7.04 77.94 89.43 83.29 73.8 81.66 77.53
Accuracy 15.63 71.69 62.98

Table 4: Precision, recall, and f-measure using only digram features

5.1.4 Trigrams

Although trigrams are able to capture more complex patterns than digrams, they do

not generalize as easily. For example, the trigrams “PERSON of the”, “in the GPE”

are highly indicative of role and at, respectively. However, there are relatively few

such features in the fairly small data set. The utility of digrams can be seen by the

pertinence of the trigram “GPE PERSON and”, which only occurs a few times, but

fills in for the absent digram “GPE PERSON”. Only maximum entropy faired quite

well with trigrams only, sporting a high accuracy and a few very high precisions.

The high precisions seem to be due to the accuracy of very specific features, such as

“PERSON of the”.

29

Naive Bayes Maximum Entropy Winnow
Prec Rec F1 Prec Rec F1 Prec Rec F1

Part 11.07 46.56 17.89 79.17 29.01 42.46 4.08 26.72 7.08
Role 48.94 5.17 9.35 61.63 11.91 19.96 31.23 18.88 23.53
At 26.95 13.72 18.18 90 6.5 12.12 28.71 10.47 15.34

Near 0.71 71.43 1.41 0 0 0 0 0 0
Social 7.94 37.74 13.11 0 0 0 22.73 9.43 13.33

Unrelated 79.01 2.84 5.49 73.45 98.67 84.21 72.39 61.94 66.76
Accuracy 6.95 73.32 48.69

Table 5: Precision, recall, and f-measure using only trigram features

5.2 Combinations of Features

Across the board, nearly every combination of feature types benefits when the entity

type feature is included. Given the apparent importance of entity type, it is not

surprising that it helps the others. Table 6 compares the results of using digrams

alone (one of the best single features) with the combination of digrams and entity

type. Although winnow fell back to always predicting unrelated, its overall accuracy

increased. Both naive Bayes and maximum entropy benefit on almost every measure

when entity types are included.

Overall, the results when using multiple feature types depend more on the learn-

ing algorithm used than the specific set of features. For example using maximum

entropy with trigrams and entity types yields very similar results to using maximum

entropy with tokens, digrams, trigrams and type. Winnow and naive Bayes also

performed relatively consistently with different sets of features. However, the three

30

Naive Bayes Maximum Entropy Winnow
Dig Dig+Typ Dig Dig+Typ Dig Dig+Typ

Part Prec 8.41 8.49 43.69 44.07 21.31 0
Part Rec 62.6 67.94 34.35 39.69 19.85 0
Role Prec 34.92 33.47 51.92 50.53 34.01 0
Role Rec 36.18 56.4 33.48 42.92 22.7 0
At Prec 18.73 22.01 34.59 51.71 19.64 0
At Rec 46.93 71.12 23.1 43.68 1.91 0

Near Prec 0.51 2 0 0 0 0
Near Rec 9.52 4.76 0 0 0 0

Social Prec 7.05 15.86 35 42.22 3 0
Social Rec 73.58 86.79 13.21 35.85 5.66 0

Unrelated Prec 78.3 80.14 77.94 80.4 73.8 70.84
Unrelated Rec 3.69 5.2 89.43 85.79 81.66 100

Accuracy 15.63 22.05 71.69 72.82 62.98 70.84

Table 6: Precision, recall, and f-measure with digrams compared to digrams and
entity types

algorithms performed very different from each other. The next section compares the

three algorithms.

Although, each combination of features had strengths and weaknesses, the best

by accuracy was tokens, digrams, trigrams, and types (all the available features)

in conjunction with the maximum entropy algorithm (table 7). This combination

classified relations with 74.87% accuracy.

To better illustrate what these numbers mean, the confusion matrix in table 8

shows how each relation example was classified. The prediction made for each test

example is shown on the left key, and the actual relation type is shown on the top

key. Most predictions for one of the five defined relations were either correct or were

31

Part Role At Near Social Unrelated
Precision 55.17 56.21 56.11 0 55.17 79.72

Recall 36.64 44.72 36.46 0 30.19 89.52
F1 44.04 49.81 44.2 0 39.02 84.33

Table 7: Precision, recall, and f-measure with tokens, digrams, trigrams, and type
with the maximum entropy algorithm.

really unrelated. This shows how well maximum entropy is able to distinguish among

the relations. The fact that most of the mistakes made by maximum entropy were

unrelated examples classified as related and vice versa, shows that its main difficulty

is with determining if any relation exists.

Part Role At Near Social Unrelated
Part 48 9 3 1 0 26
Role 1 199 14 0 0 140
At 7 5 101 5 0 62

Near 0 0 0 0 0 0
Social 0 5 0 0 16 8

Unrelated 75 227 159 15 37 2016

Table 8: Confusion matrix for tokens, digrams, trigrams, and type with the maximum
entropy algorithm.

5.3 Analysis of Algorithms

As mentioned in the previous section, multi-feature experiments tend to depend far

more on the algorithm than the feature set. Table 9 shows the average numbers

32

achieved from multi-feature experiments for each learning algorithm. Results from

each of the experiments were generally within a few percentage points of the averages.

Naive Bayes Maximum Entropy Winnow
Part Precision 8.81 53 45

Part Recall 49.43 36.64 1.72
Role Precision 28.65 52.32 9.18

Role Recall 64.1 43.6 1.01
At Precision 21.23 55.1 3.57

At Recall 68.77 37.09 0.63
Near Precision 0.08 50 0

Near Recall 1.19 2.38 0
Social Precision 20.46 44.51 0

Social Recall 54.25 28.3 0
Unrelated Precision 79.01 79.54 70.9

Unrelated Recall 5.42 88 99.19
Accuracy 21.75 73.67 70.53

Table 9: Average results for all multi-feature experiments for each algorithm

Naive Bayes nearly always thwarts the unrelated relation. Winnow nearly always

predicts the unrelated relation. Maximum entropy consistently achieves around 50%

precision for all defined relations (excluding near) and recall around 40%, while re-

taining an accuracy greater than 70%.

The confusion matrix in table 8 shows how the maximum entropy algorithm often

predicted the right relation if the pair was indeed related in some way, but had dif-

ficulty differentiating between related and unrelated. This indicates that identifying

which relation is generally not as hard as identifying the existence of a relation. The

naive Bayes results support this. When rarely predicting a relation to be unrelated

33

it is expected that precisions will be so low, but the recall for the defined relations is

disproportionately high with naive Bayes.

The inability of the winnow algorithm to identify many of the defined relations

and defaulting to unrelated is likely due to the fact that it is mistake driven. Because

there are so many more unrelated pairs than related pairs, affirmative predictions for

the defined relations are likely to be wrong. As a consequence, weights associated

with the defined relations will be rapidly demoted and the algorithm will refrain from

choosing these relations. The winnow implementation used here is better suited to

deal with only two classes (divided by the threshold); a system such as Dan Roth’s

Sparse Network of Winnows (SNoW) would be better suited to deal with the six.

Another potential problem with winnow, is that the function may not be linearly

separable.

6 Related Work

Much of the other work that has been done on classifying relations in natural language

has focused on identifying very specific relations, opposed to the more general relations

we sought (i.e. role and social). The more focused approach appears better able to

hone in on specific linguistic patterns characteristic of a relation. Many of the correct

classifications in this study may be due to the algorithm finding specific relations

that are unfortunately placed in an umbrella relation type. For instance, one relation

34

studied by Zelenko et al. (2002), person affiliation, the affiliation of a person to an

organization is, for better or worse, placed all these relations into the much more

general role relation. One advantage to focusing on specific relations is that the

entity pairs can be filtered beforehand. Because the person affiliation relation is only

defined between a person and an organization, only pairs of these entity types need

to be considered.

Zelenko et al. (2002) also studies the organization location relation. For both

of these specific relations studied, precision approached 90% and recall approached

80% with approximately 1,000-2,000 training examples. They use kernel functions

on shallow parse trees containing node attributes. Experiments performed in Zelenko

et al. (2002) differed from those described in this paper in that entity pairs were first

filtered, only one relation was examined at time (as opposed to five), and sentence-

based parse features were used with kernel methods.

The use of kernel methods largely captures the relative similarities of two parse

trees through common subtrees in the trees. Zelenko et al. (2002) utilize the fact that

shallow parse trees identify the key parts of a sentence, rather than all the intrica-

cies of its syntax as a full parse does. Parse trees were annotated with each entity’s

role in the relation and the kernel functions judged the similarities among exam-

ples. Their experiments, using these techniques with SVMs and Voted Perceptrons,

35

showed slightly better performance and a steeper learning curve than feature-based

experiments with Naive Bayes and Winnow.

Preliminary research, with a slightly different approach, by Roth and tau Yih

(2002) showed promising results for relation recognition. This research combines the

problems of identifying entities types and identifying relations into one larger problem.

One motivation for this approach was due to erroneous named-entity tagger decisions

propagating into the relation identification. For instance, tagging “Chelsea”, the

Massachusetts town, as a person may have a large impact on results because entity

type is of central importance to relation classification.

The two very specific relations examined in Roth and tau Yih (2002) are killed and

born in. The killed relation occurring between two people when one person kills the

other, and born in being the relation of a person to his or her birthplace. To classify

the entity types and relation, the probabilities of each entity and relation example

being of a specific type (person, place, kill, or born) are first computed independently

based on several features (nearly the same features mentioned in section 4.1). With

these probabilities, the relations and entities are assembled into a two-layer belief

network, one layer for the entities, another for the relations. Each relation connects to

two entities, as they are binary relations. Finding the most probable class assignments

is equivalent to finding assignments for all the variables in the network that maximizes

the joint probability. Although this most-likely-explanation problem is intractable in

36

this situation (because its not acyclic), Pearl’s belief propagation algorithm applied

iteratively empirically generates good results (Murphy et al., 1999). It is worth noting

that the precision and recall achieved in this research, though very promising, were

not as good as in Kernel Methods (Zelenko et al., 2002), especially the recall for kill

relations which was generally 50% or less.

Although very different in goal, Paul Ogilvie’s May 2000 University of Mas-

sachusetts honors thesis (Paul Ogilvie, 2000) presents the use of linked-object repre-

sentations for topic tracking. The linked-object representation is highly analogous to

entity-pairings used in this research. These simple data structures appear to be quite

powerful for representing the more salient information in natural language text. The

topic of an article is in many ways one of the most important and relevant aspects

of it. Among Ogilvie’s findings, was that naive co-reference resolution – associating

pronouns with the proper name in the preceding sentence, if one is present – did not

improve topic-tracking abilities.

7 Future work

As noted in the introduction, natural language processing often uses both syntac-

tic and semantic information. Much of the information gathered about relations in

this research beyond the “bag of words” was purely syntactic. One frequently used

technique that captures some of the semantic implications is the use of hyponyms,

37

hypernyms, and synonyms. These may extend the ability of certain features to gen-

eralize; for example, the feature “parent” may prove more useful if used with the

additional hyponyms “father” and “mother.” Such related words may be retrieved

from WordNet (Fellbaum, 1998); WordNet features are used in Roth and tau Yih

(2002).

Although digrams and trigrams capture information about the word order, and

consequently some syntactic information, English syntax is not linear. Related work

has used dependency parsers and shallow parsers (Zelenko et al., 2002) to examine

syntax. Zelenko et al. (2002) found relative depth in the shallow parse to be par-

ticularly useful. Cultivation of full parse trees could provide tremendous additional

information. For example, if one entity is mentioned in a prepositional phrase, the

preposition might be very useful (consider the preposition “at”).

Another extension to this research, and in fact how this research began, is to utilize

web structure and web crawling. Craven et al. (1998) use web page content as well

as hyperlink structure to extract social relations, such as that between a student and

a professor. Their research focuses on the domain of university web sites. The same

topological information may aid relation extraction in a more general web setting. For

instance, on news web sites, pages linked in referential ways (as opposed to general

navigation links) may provide additional information about relations.

38

Research described in this paper only scratches the surface of what one might try

when attempting to classify relations. As mentioned before, this work investigates

only a few concrete, yet very general, types of relations. One question to ask, is

how does the generality of the relations sought affect the results? Are very specific

relations always easier to identify? And which one are the easiest?

8 Conclusion

This research attempts to expand on earlier research into the problem of classifying

relations. It explores this task with a more general perspective, with the goal of learn-

ing less specific and more conceptual information from written documents. Though

not as many as desired, many relations are correctly classified with these methods.

These successes, achieved using relatively little information, show that there is poten-

tial and support the need for further study. This research also exposes the proclivities

of the three learning algorithms when used on this data and shows maximum entropy

to be most effective.

The ability to classify relations in natural language has many direct applications

and is a key to many, broader, related tasks such as language understanding. Success

in related and future research could have widespread implications, from improving

search engines to making computer interaction more tolerable to users. As computers

39

become more and more prevalent, bridging the gap between human language and

computer language will become increasingly important.

40

References

Mark Craven, Dan DiPasquo, Dayne Freitag, Andrew K. McCallum, Tom M. Mitchell,

Kamal Nigam, and Seán Slattery. Learning to Extract Symbolic Knowledge from

the World Wide Web. In Proceedings of AAAI-98, 15th Conference of the American

Association for Artificial Intelligence, pages 509–516, Madison, US, 1998. AAAI

Press, Menlo Park, US.

C. Fellbaum. WordNet: An Electronic Lexical Database. MIT Press, 1998. ISBN

0-262-06197-X.

Llúıs Màrquez. Machine Learning and Natural Language Processing. Technical Re-

port LSI-00-45-R, Departament de Llenguatges i Sistemes Informàtics (LSI), Uni-

versitat Politecnica de Catalunya, Barcelona, Spain, 2000.

A. McCallum and K. Nigam. A Comparison of Event Models for Naive Bayes Text

Classification. In AAAI-98 Workshop on Learning for Text Categorization, 1998.

Andrew Kachites McCallum. MALLET: A Machine Learning for Language Toolkit.

http://www.cs.umass.edu/ mccallum/mallet, 2002.

T. Morton. Coreference for NLP Applications. In Proceedings ACL-2000, 2000.

41

Kevin P. Murphy, Yair Weiss, and Michael I. Jordan. Loopy Belief Propagation

for Approximate Inference: An Empirical Study. In Proceedings of the Fifteenth

Conference on Uncertainty in Artificial Intelligence, 1999.

K. Nigam, J. Lafferty, and A. McCallum. Using Maximum Entropy for Text Clas-

sification. In IJCAI-99 Workshop on Machine Learning for Information Filtering,

pages 61–67, 1999.

Paul Ogilvie. Extracting and Using Relationships Found in Text for Topic Tracking.

University of Massachusetts Honor’s Thesis, May 2000.

Stephen Della Pietra, Vincent J. Della Pietra, and John D. Lafferty. Inducing Fea-

tures of Random Fields. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 19(4), 1997.

Dan Roth and Wen tau Yih. Probabilistic Reasoning for Entity and Relation Recog-

nition. In COLING, August 2002.

N. Wacholder, Y. Ravin, and M. Choi. Disambiguation of Proper Names in Text.

In Proceedings of Fifth Conference on Applied Natural Language Processing, pages

202–208, 1997.

Dmitry Zelenko, Chinatsu Aone, and Anthony Richardella. Kernel Methods for Rela-

tion Extraction. In Proceedings of the Conference on Empirical Methods in Natural

42

Language Processing (EMNLP), pages 71–78, Philadelphia, July 2002. Association

for Computational Linguistics.

43

